

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Emerging Technologies for Smart Buildings

Marina Sofos, Ph.D.

Smart Buildings Workshop, University of Nebraska

November 9, 2018

Who Supports Buildings Energy Efficiency R&D (Federal)?

The Complexity of Energy Use in the Buildings Market

BTO Goal: Reduce Building Energy Use by 30% by 2030

2030 sector-wide goal: reduce energy use 30% per sq. ft.

Long term goal: reduce energy use 50% per sq. ft.

Metric: energy use intensity (EUI)

Baseline: 2010

Rationale: allows comparisons across fuel types, building types, building sectors, end uses, that are more internationally relevant.

Why Do Smart Building Technologies Matter?

• Current state-of-the-art:

Aggregated annual energy savings of 29%, or <u>~4-5% of total national energy</u> <u>consumption</u> through implementation of efficiency measures to optimize programmable settings and to detect and diagnose operational problems in the <u>commercial sector alone</u>.

• Future technological development:

Additional savings of $\sim 10\%$ of total building energy consumption in 2017 from more sophisticated analytics and control strategies, or <u>1.4 quads savings in 2030</u> and <u>3.8 quads in 2050</u>.

Grid-interactive Efficient Buildings

Smart technologies enabling flexible building loads

BTO Sensors and Controls R&D Portfolio

BTO's Portfolio Approach to Smart Buildings

SOFTWARE DEVELOPMENT

Co-funded with Building Energy Modeling sub-program to support controls development through long-term software improvements

BENCHMARKING

Development of testing frameworks/ methods & curated datasets to spur innovation by establishing expected performance

TECHNOLOGY DEVELOPMENT

Optimization of building operations through competitive, early-stage R&D across programmatic focus areas

FIELD VALIDATION

Verification of technologies / strategies, increasing confidence in the value of intelligence and energy flexibility

Multi-Functional, Plug-and-Play Wireless Sensor Networks

Focus Area	Relevant ECM	Sector	Installed Cost		Energy Performance (HVAC, Lighting)		2030 Energy Savings
			Market Entry	2030 Target	Market Entry	2030 Goal	Technical Potential
Wireless Sensor Networks	Plug-and- play sensors	Residential	\$35/ node	\$29/ node	17%, 35%		1.14 quads
		Commercial	\$115/ node	\$57/ node			0.99 quads

Technical Barriers:

- Enhanced wireless communications
- Operational power lifetime
- Accuracy and reliability,
- Modular design and materials cost reduction,
- IT system expansion,
- Automated calibration, recognition and configuration,
- Flexible placement methods

Multifunctional Plug & Play Sensors

All-Digital Passive RFID Sensors

- All digital: built-in digitizer with direct On/Off (1/0) outputs
 - No on-node signal processing necessary
 - No on-node power supply (battery) needed
- Passive RFID tags for ID and wireless communication
 - Wireless interrogation
 - Plug & play operation
 - Networking and integration into BMS (BACnet or VOLTTRON)

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Automated Fault Detection and Diagnostics (AFDD)

Performance Evaluation Data Sets:

- For evaluation and benchmarking performance accuracy of FDD algorithms or tools
- Contains operational data from physical experimentation as well as simulation
- Currently covers AHU-VAV systems and RTUs:
 - Operational data from commonly available measurement points, spanning system operations under variety of fault-present & fault-free conditions
 - Ground truth information as to which faults are present during which time periods.

Performance Evaluation Approach:

- Develop a methodology to evaluate the performance of AFDD algorithms & tools:
 - Make available to public for replication, ongoing use
 - Apply to AFDD solutions from industry and research to generate case studies with examples of insights gained from evaluation
- Leverage TAG to engage stakeholders, inform methodology

The Building Adapter

The Problem (The Need/Challenge)

The costly process of creating a match between a building's sensor data streams and the inputs of a building analytics engine needs to be automated, in order to enable buildings analytics at scale.

Controls: The Achilles Heel of Buildings

EnergyPlus: industry-leading BEM engine, but ...

- Idealized built-in control, bespoke language for custom sequences
- Separate from control workflows → costly, error-prone manual bridges

Spawn: next-gen BEM engine that also supports control workflows

- Re-implements HVAC and control in Modelica
- Control models directly usable in control design, test & implementation

OpenBuildingControl: leverage Spawn to promote high-performance control

- Open reference implementations of ASHRAE Guideline 36 sequences
- Translation to open & proprietary control execution platforms → vendor partners
- Tools for testing, diagnostics & commissioning along with analysis to demonstrate significant savings

Example: multi-zone VAV + reheat + economizer

- Standard → fixed supply-temp, variable airflow; G36 → supply temp reset, load-based airflow
- A lot less airflow and reheat! → 30% energy savings!

Testing of Advanced Controls

Challenge:

While many advanced control strategies show promise in R&D phase, adoption at scale requires low implementation costs to reduce payback period and verified performance to gain the trust of building owners and operators.

Solution:

- Building emulation can significantly aid in meeting these requirements before the cost and risk of testing new strategies needs to be taken on by building stakeholders
- Made more possible recently by innovations in building performance simulation (i.e. use of the Modelica and Functional Mockup Interface (FMI) standards)

The **Building Operation Testing (BOPTEST)** framework will consist of a series of test procedures, benchmark test cases, and standard emulation environment to validate, compare, and debug advanced control strategies

Pacific

Occupant-centric Sensing and Controls

Focus Area	Relevant ECM	Sector	Installed Cost		Energy Performance (HVAC, Lighting)		2030 Energy
			Market Entry	2030 Target	Market Entry	2030 Goal	Savings Technical Potential
Occupant- centric Sensors and Controls	Occupancy Counting	Residential	\$70/ occupant		15%,	30%,	2.31 quads
		Commercial	\$36/ occupant		15%	40%	1.10 quads
	Occupancy Comfort	Residential	\$92/ occupant		20%,	40%,	3.14 quads
		Commercial	\$49/ occupant		30%	60%	1.49 quads

Technical Barriers:

- Improved occupancy counting and comfort estimation and incorporation into control schemes
- Adaptive models and controls with near real-time response
- Long-term accuracy and calibration of indoor air quality variables (e.g., CO₂, humidity)
- Automated recognition and configuration with existing building automation infrastructure

Occupant–Centric Controls

Looking to the Future: Enabling Interoperability

Graphic: Marjorie Schott and Stephen Frank, NREL

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Cybersecurity Opportunities

- Develop solutions that can easily implement/update security features
- Robustness analysis
 - characterize the robustness of modelbased learning controllers to adversarial attacks
- Robust control design
 - learning and decision-making robustness to perturbations in measured data
- Attack detection
 - detect and diagnose control decisions driven by malicious data manipulation

How to Get Involved with BTO

• Get on our email list

(<u>http://www1.eere.energy.gov/buildings/newsletter.html</u>, and click on "Sign up to receive news and events from BTO")

- Attend the annual BTO Peer Review in Washington, DC
- Volunteer to be a reviewer (send CV to <u>BTOreviewer@ee.doe.gov</u>)
- Use Scout! (<u>scout.energy.gov</u>)

Marina Sofos, Ph.D.

Technology Manager, Emerging Technologies

DOE Building Technologies Office

Marina.sofos@ee.doe.gov

https://www.energy.gov/eere/buildings/sensors-and-controls-rd-0